On Computing Minimal Correction Subsets

نویسندگان

  • Joao Marques-Silva
  • Federico Heras
  • Mikolás Janota
  • Alessandro Previti
  • Anton Belov
چکیده

A set of constraints that cannot be simultaneously satisfied is over-constrained. Minimal relaxations and minimal explanations for over-constrained problems find many practical uses. For Boolean formulas, minimal relaxations of over-constrained problems are referred to as Minimal Correction Subsets (MCSes). MCSes find many applications, including the enumeration of MUSes. Existing approaches for computing MCSes either use a Maximum Satisfiability (MaxSAT) solver or iterative calls to a Boolean Satisfiability (SAT) solver. This paper shows that existing algorithms for MCS computation can be inefficient, and so inadequate, in certain practical settings. To address this problem, this paper develops a number of novel techniques for improving the performance of existing MCS computation algorithms. More importantly, the paper proposes a novel algorithm for computing MCSes. Both the techniques and the algorithm are evaluated empirically on representative problem instances, and are shown to yield the most efficient and robust solutions for MCS computation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Minimal Sets on Propositional Formulae I: Problems & Reductions

Boolean Satisfiability (SAT) is arguably the archetypical NP-complete decision problem. Progress in SAT solving algorithms has motivated an ever increasing number of practical applications in recent years. However, many practical uses of SAT involve solving function as opposed to decision problems. Concrete examples include computing minimal unsatisfiable subsets, minimal correction subsets, pr...

متن کامل

Minimal Sets over Monotone Predicates in Boolean Formulae

The importance and impact of the Boolean satisfiability (SAT) problem in many practical settings is well-known. Besides SAT, a number of computational problems related with Boolean formulas find a wide range of practical applications. Concrete examples for CNF formulas include computing prime implicates (PIs), minimal models (MMs), minimal unsatisfiable subsets (MUSes), minimal equivalent subse...

متن کامل

Using Minimal Correction Sets to More Efficiently Compute Minimal Unsatisfiable Sets

An unsatisfiable set is a set of formulas whose conjunction is unsatisfiable. Every unsatisfiable set can be corrected, i.e., made satisfiable, by removing a subset of its members. The subset whose removal yields satisfiability is called a correction subset. Given an unsatisfiable set F there is a well known hitting set duality between the unsatisfiable subsets of F and the correction subsets o...

متن کامل

Maximal Falsifiability - Definitions, Algorithms, and Applications

Similarly to Maximum Satisfiability (MaxSAT), Minimum Satisfiability (MinSAT) is an optimization extension of the Boolean Satisfiability (SAT) decision problem. In recent years, both problems have been studied in terms of exact and approximation algorithms. In addition, the MaxSAT problem has been characterized in terms of Maximal Satisfiable Subsets (MSSes) and Minimal Correction Subsets (MCSe...

متن کامل

Interactive Error Correction in Implicative Theories

Errors in implicative theories coming from binary data are studied. First, two classes of errors that may affect implicative theories are singled out. Two approaches for finding errors of these classes are proposed, both of them based on methods of Formal Concept Analysis. The first approach uses the cardinality minimal (canonical or DuquenneGuigues) implication base. The construction of such a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013